Famine versus feast: understanding the metabolism of tumors in vivo.
نویسندگان
چکیده
To fuel unregulated proliferation, cancer cells alter metabolism to support macromolecule biosynthesis. Cell culture studies have revealed how different oncogenic mutations and nutrients impact metabolism. Glucose and glutamine are the primary fuels used in vitro; however, recent studies have suggested that utilization of other amino acids as well as lipids and protein can also be important to cancer cells. Early investigations of tumor metabolism are translating these findings to the biology of whole tumors and suggest that additional complexity exists beyond nutrient availability alone in vivo. Whole-body metabolism and tumor heterogeneity also influence the metabolism of tumor cells, and successful targeting of metabolism for cancer therapy will require an understanding of tumor metabolism in vivo.
منابع مشابه
Predicting the accumulation of storage compounds by Rhodococcus jostii RHA1 in the feast-famine growth cycles using genome-scale flux balance analysis
Feast-famine cycles in biological wastewater resource recovery systems select for bacterial species that accumulate intracellular storage compounds such as poly-β-hydroxybutyrate (PHB), glycogen, and triacylglycerols (TAG). These species survive better the famine phase and resume rapid substrate uptake at the beginning of the feast phase faster than microorganisms unable to accumulate storage. ...
متن کاملFast “Feast/Famine” Cycles for Studying Microbial Physiology Under Dynamic Conditions: A Case Study with Saccharomyces cerevisiae
Microorganisms are constantly exposed to rapidly changing conditions, under natural as well as industrial production scale environments, especially due to large-scale substrate mixing limitations. In this work, we present an experimental approach based on a dynamic feast/famine regime (400 s) that leads to repetitive cycles with moderate changes in substrate availability in an aerobic glucose c...
متن کاملMetabolic adjustment upon repetitive substrate perturbations using dynamic 13C-tracing in yeast
BACKGROUND Natural and industrial environments are dynamic with respect to substrate availability and other conditions like temperature and pH. Especially, metabolism is strongly affected by changes in the extracellular space. Here we study the dynamic flux of central carbon metabolism and storage carbohydrate metabolism under dynamic feast/famine conditions in Saccharomyces cerevisiae. RESUL...
متن کاملrRNA and poly-beta-hydroxybutyrate dynamics in bioreactors subjected to feast and famine cycles.
Feast and famine cycles are common in activated sludge wastewater treatment systems, and they select for bacteria that accumulate storage compounds, such as poly-beta-hydroxybutyrate (PHB). Previous studies have shown that variations in influent substrate concentrations force bacteria to accumulate high levels of rRNA compared to the levels in bacteria grown in chemostats. Therefore, it can be ...
متن کاملrRNA and Poly- -Hydroxybutyrate Dynamics in Bioreactors Subjected to Feast and Famine Cycles
rRNA and Poly-Hydroxybutyrate Dynamics in Bioreactors Subjected to Feast and Famine Cycles Dominic Frigon,† Gerard Muyzer, Mark van Loosdrecht, and Lutgarde Raskin* Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, and Environmental Biotechnology Group, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Trends in biochemical sciences
دوره 40 3 شماره
صفحات -
تاریخ انتشار 2015